Maxmin expected utility

Theory of Individual and Strategic Decisions

M.Sc. in Human Decision Science, Maastricht University

Fall 2015

Roadmap

1 Violations of Subjective Expected Utility

Relaxing the Independence of Irrelevant Alternatives

Maxmin Expected Utility

Subjective expected utility theorem

 Ansombe-Aumann SEU theorem: The following two statements are equivalent.

Subjective expected utility theorem

- Ansombe-Aumann SEU theorem: The following two statements are equivalent.
 - Preferences ≥ satisfy the axioms:
 - (A_1'') Completeness
 - (A_2'') Transitivity
 - (A_3'') Continuity
 - (A_4'') Independence of irrelevant alternatives
 - (A_5'') Monotonicity
 - (A_6'') Non-triviality

Subjective expected utility theorem

- Ansombe-Aumann SEU theorem: The following two statements are equivalent.
 - Preferences ≥ satisfy the axioms:
 - (A_1'') Completeness
 - (A_2'') Transitivity
 - (A_3'') Continuity
 - (A_4'') Independence of irrelevant alternatives
 - (A_5'') Monotonicity
 - (A_6'') Non-triviality
 - There exist
 - a utility function $u: Z \to \mathbb{R}$
 - a unique belief $\mu \in \Delta(\Omega)$

such that \succeq are represented by

$$U(f) := \sum_{\omega \in \Omega} \mu(\omega) \cdot \left(\sum_{z \in \mathcal{Z}} f(\omega)(z) \cdot u(z) \right)$$

 We draw from an urn with three balls (one red and unknown number of black/yellow):

- We draw from an urn with three balls (one red and unknown number of black/yellow):
 - f_1 : if the ball is **red** you get 10 Euros
 - f_2 : if the ball is **black** you get 10 Euros

- We draw from an urn with three balls (one red and unknown number of black/yellow):
 - f_1 : if the ball is **red** you get 10 Euros
 - f_2 : if the ball is **black** you get 10 Euros
 - g_1 : if the ball is **red or yellow** you get 10 Euros
 - g_2 : if the ball is **black or yellow** you get 10 Euros

- We draw from an urn with three balls (one red and unknown number of black/yellow):
 - f_1 : if the ball is **red** you get 10 Euros
 - f_2 : if the ball is **black** you get 10 Euros
 - g_1 : if the ball is **red or yellow** you get 10 Euros
 - g_2 : if the ball is **black or yellow** you get 10 Euros
- Write them as acts:

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	(1 * 0)
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- We draw from an urn with three balls (one red and unknown number of black/yellow):
 - f_1 : if the ball is **red** you get 10 Euros
 - f_2 : if the ball is **black** you get 10 Euros
 - g_1 : if the ball is **red or yellow** you get 10 Euros
 - g_2 : if the ball is **black or yellow** you get 10 Euros
- Write them as acts:

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

• In experiments we typically see $f_1 > f_2$ and $g_2 > g_1$.

- We draw from an urn with three balls (one red and unknown number of black/yellow):
 - f_1 : if the ball is **red** you get 10 Euros
 - f_2 : if the ball is **black** you get 10 Euros
 - g_1 : if the ball is **red or yellow** you get 10 Euros
 - g_2 : if the ball is **black or yellow** you get 10 Euros
- Write them as acts:

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	(- ()	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- In experiments we typically see $f_1 > f_2$ and $g_2 > g_1$.
- This is not consistent with SEU.

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	(1 * 0)
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

ullet Suppose that \succeq are represented by a SEU function.

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- ullet Suppose that \succeq are represented by a SEU function.
- Without loss of generality take u(10) = 1 and u(0) = 0.

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1		$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g ₂	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- ullet Suppose that \succeq are represented by a SEU function.
- Without loss of generality take u(10) = 1 and u(0) = 0.
- Then, there exists a unique $\mu \in \Delta(\Omega)$ such that

	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- ullet Suppose that \succeq are represented by a SEU function.
- Without loss of generality take u(10) = 1 and u(0) = 0.
- Then, there exists a unique $\mu \in \Delta(\Omega)$ such that

•
$$U(f_1) = \frac{1}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2) + \frac{1}{3}\mu(\omega_3) = \frac{1}{3}$$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g ₂	1 (0 (0 10 10 0)	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Without loss of generality take u(10) = 1 and u(0) = 0.
- Then, there exists a unique $\mu \in \Delta(\Omega)$ such that

•
$$U(f_1) = \frac{1}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2) + \frac{1}{3}\mu(\omega_3) = \frac{1}{3}$$

• $U(f_2) = \frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$

•
$$U(f_2) = \frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2		$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	(- ()	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Without loss of generality take u(10) = 1 and u(0) = 0.
- Then, there exists a unique $\mu \in \Delta(\Omega)$ such that

•
$$U(f_1) = \frac{1}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2) + \frac{1}{3}\mu(\omega_3) = \frac{1}{3}$$

• $U(f_2) = \frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$

•
$$U(f_2) = \frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$$

•
$$U(g_1) = \frac{1}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \mu(\omega_3)$$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2		$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	(- ()	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Without loss of generality take u(10) = 1 and u(0) = 0.
- Then, there exists a unique $\mu \in \Delta(\Omega)$ such that

•
$$U(f_1) = \frac{1}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2) + \frac{1}{3}\mu(\omega_3) = \frac{1}{3}$$

• $U(f_2) = \frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$

•
$$U(f_2) = \frac{3}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$$

•
$$U(g_1) = \frac{1}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \mu(\omega_3)$$

•
$$U(g_2) = \frac{2}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \frac{2}{3}\mu(\omega_3) = \frac{2}{3}$$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2		$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	(- ()	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Without loss of generality take u(10) = 1 and u(0) = 0.
- Then, there exists a unique $\mu \in \Delta(\Omega)$ such that

•
$$U(f_1) = \frac{1}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2) + \frac{1}{3}\mu(\omega_3) = \frac{1}{3}$$

• $U(f_2) = \frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$

•
$$U(f_2) = \frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$$

•
$$U(g_1) = \frac{1}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \mu(\omega_3)$$

•
$$U(g_2) = \frac{2}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \frac{2}{3}\mu(\omega_3) = \frac{2}{3}$$

•
$$f_1 \succ f_2 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) < 1$$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2		$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that \succeq are represented by a SEU function.
- Without loss of generality take u(10) = 1 and u(0) = 0.
- ullet Then, there exists a unique $\mu \in \Delta(\Omega)$ such that

•
$$U(f_1) = \frac{1}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2) + \frac{1}{3}\mu(\omega_3) = \frac{1}{3}$$

- $U(f_2) = \frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$
- $U(g_1) = \frac{1}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \mu(\omega_3)$
- $U(g_2) = \frac{2}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \frac{2}{3}\mu(\omega_3) = \frac{2}{3}$
- $f_1 \succ f_2 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) < 1$
- $g_2 \succ g_1 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) > 1$

	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that \succeq are represented by a SEU function.
- Without loss of generality take u(10) = 1 and u(0) = 0.
- ullet Then, there exists a unique $\mu \in \Delta(\Omega)$ such that

•
$$U(f_1) = \frac{1}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2) + \frac{1}{3}\mu(\omega_3) = \frac{1}{3}$$

•
$$U(f_2) = \frac{3}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)$$

•
$$U(g_1) = \frac{1}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \mu(\omega_3)$$

•
$$U(g_2) = \frac{2}{3}\mu(\omega_1) + \frac{2}{3}\mu(\omega_2) + \frac{2}{3}\mu(\omega_3) = \frac{2}{3}$$

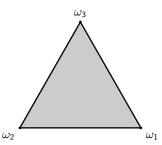
•
$$f_1 \succ f_2 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) < 1$$

•
$$g_2 \succ g_1 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) > 1$$

• Thus, $f_1 \succ f_2$ and $g_2 \succ g_1$ cannot occur simultaneously.

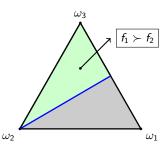
act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	(- ()	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- $f_1 \succ f_2 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) < 1$
- $g_2 \succ g_1 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) > 1$



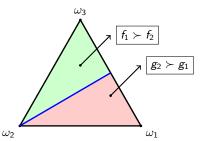
act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	(- ()	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- $f_1 \succ f_2 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) < 1$
- $g_2 \succ g_1 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) > 1$



act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	(- ()	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- $f_1 \succ f_2 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) < 1$
- $g_2 \succ g_1 \Leftrightarrow 2\mu(\omega_1) + \mu(\omega_2) > 1$



act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2		$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g ₂	(0/0 - 40 4/0 - 0)	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

Suppose that IIA holds:

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g ₂		$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that IIA holds:
 - $f_1 \succ f_2 \Leftrightarrow (0.5 \circledast f_1, 0.5 \circledast g_1) \succ (0.5 \circledast f_2, 0.5 \circledast g_1)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2		$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	(0/0 - 10 1/0 - 0)	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that IIA holds:
 - $f_1 \succ f_2 \Leftrightarrow (0.5 \circledast f_1, 0.5 \circledast g_1) \succ (0.5 \circledast f_2, 0.5 \circledast g_1)$
 - $g_2 \succ g_1 \Leftrightarrow (0.5 \circledast g_2, 0.5 \circledast f_1) \succ (0.5 \circledast g_1, 0.5 \circledast f_1)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that IIA holds:
 - $f_1 \succ f_2 \Leftrightarrow (0.5 \circledast f_1, 0.5 \circledast g_1) \succ (0.5 \circledast f_2, 0.5 \circledast g_1)$
 - $g_2 \succ g_1 \Leftrightarrow (0.5 \circledast g_2, 0.5 \circledast f_1) \succ (0.5 \circledast g_1, 0.5 \circledast f_1)$

	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
h_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$
h_2	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that IIA holds:
 - $f_1 \succ f_2 \Leftrightarrow (0.5 \circledast f_1, 0.5 \circledast g_1) \succ (0.5 \circledast f_2, 0.5 \circledast g_1)$
 - $g_2 \succ g_1 \Leftrightarrow (0.5 \circledast g_2, 0.5 \circledast f_1) \succ (0.5 \circledast g_1, 0.5 \circledast f_1)$

act
 2 black/0 yellow
$$(\omega_1)$$
 1 black/1 yellow (ω_2)
 0 black/2 yellow (ω_3)
 h_1
 $(1/3 \circledast 10, 2/3 \circledast 0)$
 $(1/2 \circledast 10, 1/2 \circledast 0)$
 $(2/3 \circledast 10, 1/3 \circledast 0)$
 h_2
 $(1/2 \circledast 10, 1/2 \circledast 0)$
 $(1/2 \circledast 10, 1/2 \circledast 0)$
 $(1/2 \circledast 10, 1/2 \circledast 0)$

• $(0.5 \circledast f_1, 0.5 \circledast g_1) = h_1 = (0.5 \circledast g_1, 0.5 \circledast f_1)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2		$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	1 (, , , , , , , , , , , , , , , , , ,	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g ₂		$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that IIA holds:
 - $f_1 \succ f_2 \Leftrightarrow (0.5 \circledast f_1, 0.5 \circledast g_1) \succ (0.5 \circledast f_2, 0.5 \circledast g_1)$
 - $g_2 \succ g_1 \Leftrightarrow (0.5 \circledast g_2, 0.5 \circledast f_1) \succ (0.5 \circledast g_1, 0.5 \circledast f_1)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
h_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$
h_2	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$

- $(0.5 \otimes f_1, 0.5 \otimes g_1) = h_1 = (0.5 \otimes g_1, 0.5 \otimes f_1)$
- $(0.5 \circledast f_2, 0.5 \circledast g_1) = h_2 = (0.5 \circledast g_2, 0.5 \circledast f_1)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1		$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g ₂	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that IIA holds:
 - $f_1 \succ f_2 \Leftrightarrow (0.5 \circledast f_1, 0.5 \circledast g_1) \succ (0.5 \circledast f_2, 0.5 \circledast g_1)$
 - $g_2 \succ g_1 \Leftrightarrow (0.5 \circledast g_2, 0.5 \circledast f_1) \succ (0.5 \circledast g_1, 0.5 \circledast f_1)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
h_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$
h_2	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$

- $(0.5 \circledast f_1, 0.5 \circledast g_1) = h_1 = (0.5 \circledast g_1, 0.5 \circledast f_1)$
- $(0.5 \circledast f_2, 0.5 \circledast g_1) = h_2 = (0.5 \circledast g_2, 0.5 \circledast f_1)$
- Hence, we need to relax IIA to explain this data. Otherwise:

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that IIA holds:
 - $f_1 \succ f_2 \Leftrightarrow (0.5 \circledast f_1, 0.5 \circledast g_1) \succ (0.5 \circledast f_2, 0.5 \circledast g_1)$
 - $g_2 \succ g_1 \Leftrightarrow (0.5 \circledast g_2, 0.5 \circledast f_1) \succ (0.5 \circledast g_1, 0.5 \circledast f_1)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
h_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$
h_2	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$

- $(0.5 \circledast f_1, 0.5 \circledast g_1) = h_1 = (0.5 \circledast g_1, 0.5 \circledast f_1)$
- $(0.5 \circledast f_2, 0.5 \circledast g_1) = h_2 = (0.5 \circledast g_2, 0.5 \circledast f_1)$
- Hence, we need to relax IIA to explain this data. Otherwise:
 - $f_1 \succ f_2 \Leftrightarrow h_1 \succ h_2$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Suppose that IIA holds:
 - $f_1 \succ f_2 \Leftrightarrow (0.5 \circledast f_1, 0.5 \circledast g_1) \succ (0.5 \circledast f_2, 0.5 \circledast g_1)$
 - $g_2 \succ g_1 \Leftrightarrow (0.5 \circledast g_2, 0.5 \circledast f_1) \succ (0.5 \circledast g_1, 0.5 \circledast f_1)$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
h_1	$(1/3 \circledast 10, 2/3 \circledast 0)$ $(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$
h_2	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$	$(1/2 \circledast 10, 1/2 \circledast 0)$

- $(0.5 \circledast f_1, 0.5 \circledast g_1) = h_1 = (0.5 \circledast g_1, 0.5 \circledast f_1)$
- $(0.5 \circledast f_2, 0.5 \circledast g_1) = h_2 = (0.5 \circledast g_2, 0.5 \circledast f_1)$
- Hence, we need to relax IIA to explain this data. Otherwise:
 - $f_1 \succ f_2 \Leftrightarrow h_1 \succ h_2$
 - $g_2 \succ g_1 \Leftrightarrow h_2 \succ h_1$

Roadmap

Violations of Subjective Expected Utility

2 Relaxing the Independence of Irrelevant Alternatives

Maxmin Expected Utility

Gilboa-Schmeidler preferences

Definition

We say that an agent has **Gilboa-Schmeidler (GS) preferences** over \mathcal{F} whenever \succeq satisfies the following axioms:

Gilboa-Schmeidler preferences

Definition

We say that an agent has **Gilboa-Schmeidler (GS) preferences** over $\mathcal F$ whenever \succeq satisfies the following axioms:

- (A_1^*) Completeness: For any two acts $f, g \in \mathcal{F}$, it is the case that $f \succeq g$ or $g \succeq f$.
- (A_2^*) **Transitivity**: For any three acts $f, g, h \in \mathcal{F}$ with $f \succeq g$ and $g \succeq h$, it is the case that $f \succeq h$.
- (A_3^*) **Continuity**: For any three acts $f, g, h \in \mathcal{F}$ with $f \succ g \succ h$, there exists some $\alpha \in (0,1)$ such that $g \sim (\alpha \circledast f, (1-\alpha) \circledast h)$.

- (A_5^*) **Monotonicity**: For any two acts $f, g \in \mathcal{F}$ with $f(\omega) \succeq g(\omega)$ for all $\omega \in \Omega$ it is the case that $f \succeq g$.
- (A_6^*) Non-triviality: There exist two acts $f,g\in\mathcal{F}$ such that $f\succ g$.

Gilboa-Schmeidler preferences

Definition

We say that an agent has **Gilboa-Schmeidler (GS) preferences** over $\mathcal F$ whenever \succeq satisfies the following axioms:

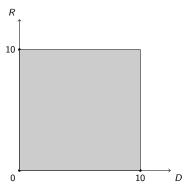
- (A_1^*) Completeness: For any two acts $f,g\in\mathcal{F}$, it is the case that $f\succeq g$ or $g\succeq f$.
- (A_2^*) **Transitivity**: For any three acts $f, g, h \in \mathcal{F}$ with $f \succeq g$ and $g \succeq h$, it is the case that $f \succeq h$.
- (A_3^*) **Continuity**: For any three acts $f, g, h \in \mathcal{F}$ with $f \succ g \succ h$, there exists some $\alpha \in (0,1)$ such that $g \sim (\alpha \circledast f, (1-\alpha) \circledast h)$.
- (A_4^*) Certainty independence (C-independence): For any two acts $f,g\in\mathcal{F}$, any constant act $h\in\mathcal{F}_c$ and any $\alpha\in[0,1]$, it is the case that $f\succeq g$ if and only if $(\alpha\circledast f,(1-\alpha)\circledast h)\succeq(\alpha\circledast g,(1-\alpha)\circledast h)$.
- (A_5^*) **Monotonicity**: For any two acts $f,g\in\mathcal{F}$ with $f(\omega)\succeq g(\omega)$ for all $\omega\in\Omega$ it is the case that $f\succeq g$.
- (A_6^*) **Non-triviality**: There exist two acts $f,g\in\mathcal{F}$ such that $f\succ g$.

Gilboa-Schmeidler preferences

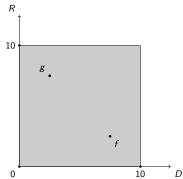
Definition

We say that an agent has **Gilboa-Schmeidler (GS) preferences** over \mathcal{F} whenever \succeq satisfies the following axioms:

- (A_1^*) Completeness: For any two acts $f,g\in\mathcal{F}$, it is the case that $f\succeq g$ or $g\succeq f$.
- (A_2^*) **Transitivity**: For any three acts $f, g, h \in \mathcal{F}$ with $f \succeq g$ and $g \succeq h$, it is the case that $f \succeq h$.
- (A_3^*) **Continuity**: For any three acts $f, g, h \in \mathcal{F}$ with $f \succ g \succ h$, there exists some $\alpha \in (0,1)$ such that $g \sim (\alpha \circledast f, (1-\alpha) \circledast h)$.
- (A_4^*) Certainty independence (C-independence): For any two acts $f,g\in\mathcal{F}$, any constant act $h\in\mathcal{F}_c$ and any $\alpha\in[0,1]$, it is the case that $f\succeq g$ if and only if $(\alpha\circledast f,(1-\alpha)\circledast h)\succeq(\alpha\circledast g,(1-\alpha)\circledast h)$.
- (A_5^*) **Monotonicity**: For any two acts $f,g \in \mathcal{F}$ with $f(\omega) \succeq g(\omega)$ for all $\omega \in \Omega$ it is the case that $f \succeq g$.
- (A_6^*) Non-triviality: There exist two acts $f,g\in\mathcal{F}$ such that $f\succ g$.
- (A₇*) **Ambiguity aversion**: For any two acts $f, g \in \mathcal{F}$ with $f \sim g$ and any $\alpha \in [0, 1]$ it is the case that $(\alpha \otimes f, (1 \alpha) \otimes g) \succeq f$.



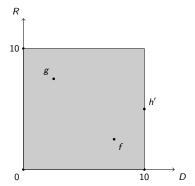
$$f \succeq g \Leftrightarrow (0.5 \circledast f, 0.5 \circledast h) \succeq (0.5 \circledast g, 0.5 \circledast h)$$



 C-independence is similar to IIA, but it restricts attention to mixtures with constant acts.

$$f \succeq g \Leftrightarrow (0.5 \circledast f, 0.5 \circledast h) \succeq (0.5 \circledast g, 0.5 \circledast h)$$

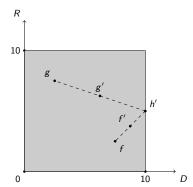
• IIA (for all $h' \in \mathcal{F}$)



 C-independence is similar to IIA, but it restricts attention to mixtures with constant acts.

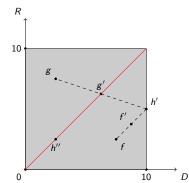
$$f \succeq g \Leftrightarrow (0.5 \circledast f, 0.5 \circledast h) \succeq (0.5 \circledast g, 0.5 \circledast h)$$

• IIA (for all $h' \in \mathcal{F}$): $f \succeq g \Leftrightarrow f' \succeq g'$.



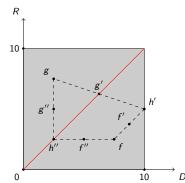
$$f \succeq g \Leftrightarrow (0.5 \circledast f, 0.5 \circledast h) \succeq (0.5 \circledast g, 0.5 \circledast h)$$

- IIA (for all $h' \in \mathcal{F}$): $f \succeq g \Leftrightarrow f' \succeq g'$.
- C-independence (for all $h'' \in \mathcal{F}_c$)



$$f \succeq g \Leftrightarrow (0.5 \circledast f, 0.5 \circledast h) \succeq (0.5 \circledast g, 0.5 \circledast h)$$

- IIA (for all $h' \in \mathcal{F}$): $f \succeq g \Leftrightarrow f' \succeq g'$.
- **C-independence** (for all $h'' \in \mathcal{F}_c$): $f \succeq g \Leftrightarrow f'' \succeq g''$.



• Ambiguity: not knowing the probabilities.

- Ambiguity: not knowing the probabilities.
- The agents has a preference for hedging.

- Ambiguity: not knowing the probabilities.
- The agents has a preference for hedging.
- There is one ball in the urn, either black or white:

act	Black (ω_1)	White (ω_2)
f	(1 * 10)	(1 * 0)
g	(1 * 0)	$(1 \circledast 10)$

- Ambiguity: not knowing the probabilities.
- The agents has a preference for hedging.
- There is one ball in the urn, either black or white:

act	Black (ω_1)	White (ω_2)
f	(1 * 10)	(1 * 0)
g	(1 * 0)	$(1 \circledast 10)$

• Based on the principle of insufficient reasoning, $f \sim g$.

- Ambiguity: not knowing the probabilities.
- The agents has a preference for hedging.
- There is one ball in the urn, either black or white:

act	Black (ω_1)	White (ω_2)
f	(1 * 10)	$(1 \circledast 0)$
g	(1 * 0)	$(1 \circledast 10)$

• Based on the principle of insufficient reasoning, $f \sim g$.

act	Black (ω_1)	White (ω_2)
$(0.5 \circledast f, 0.5 \circledast g)$	$(0.5 \circledast 10, 0.5 \circledast 0)$	$(0.5 \circledast 10, 0.5 \circledast 0)$

- Ambiguity: not knowing the probabilities.
- The agents has a preference for hedging.
- There is one ball in the urn, either black or white:

act	Black (ω_1)	White (ω_2)
f	(1 * 10)	(1 * 0)
g	(1 * 0)	$(1 \circledast 10)$

• Based on the principle of insufficient reasoning, $f \sim g$.

act	Black (ω_1)	White (ω_2)
$(0.5 \circledast f, 0.5 \circledast g)$	$(0.5 \circledast 10, 0.5 \circledast 0)$	$(0.5 \circledast 10, 0.5 \circledast 0)$

• Then, $(0.5 \circledast f, 0.5 \circledast g) \succ f$ means that the agent is ambiguity averse:

- Ambiguity: not knowing the probabilities.
- The agents has a preference for hedging.
- There is one ball in the urn, either black or white:

act	Black (ω_1)	White (ω_2)
f	(1 * 10)	(1 * 0)
g	(1 * 0)	$(1 \circledast 10)$

• Based on the principle of insufficient reasoning, $f \sim g$.

act	Black (ω_1)	White (ω_2)
$(0.5 \circledast f, 0.5 \circledast g)$	$(0.5 \circledast 10, 0.5 \circledast 0)$	$(0.5 \circledast 10, 0.5 \circledast 0)$

- Then, $(0.5 \circledast f, 0.5 \circledast g) \succ f$ means that the agent is ambiguity averse:
 - If $(0.5 \circledast f, 0.5 \circledast g)$ is chosen the probability of each outcome is known.

- Ambiguity: not knowing the probabilities.
- The agents has a preference for hedging.
- There is one ball in the urn, either black or white:

act	Black (ω_1)	White (ω_2)
f	(1 * 10)	$(1 \circledast 0)$
g	(1 * 0)	$(1 \circledast 10)$

• Based on the principle of insufficient reasoning, $f \sim g$.

act	Black (ω_1)	White (ω_2)
$(0.5 \circledast f, 0.5 \circledast g)$	$(0.5 \circledast 10, 0.5 \circledast 0)$	$(0.5 \circledast 10, 0.5 \circledast 0)$

- Then, $(0.5 \circledast f, 0.5 \circledast g) \succ f$ means that the agent is ambiguity averse:
 - If $(0.5 \circledast f, 0.5 \circledast g)$ is chosen the probability of each outcome is known.
 - If f is chosen the probability of each outcome is not known.

Roadmap

1 Violations of Subjective Expected Utility

Relaxing the Independence of Irrelevant Alternatives

Maxmin Expected Utility

Maxmin expected utility theorem

Theorem (Gilboa & Schmeidler, 1989)

Consider a finite set of outcomes Z and a finite state space Ω . Then, the preferences \succeq over $\mathcal F$ satisfy $A_1^*-A_7^*$ if and only if there is a function $u:Z\to\mathbb R$ and a closed and convex set of probability measures $C\subseteq \Delta(\Omega)$ such that for every $f,g\in\mathcal F$,

$$f \succeq g \Leftrightarrow \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \left(\sum_{z \in \mathcal{Z}} f(\omega)(z) u(z) \right) \geq \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \left(\sum_{z \in \mathcal{Z}} g(\omega)(z) u(z) \right)$$

Moreover, C is unique and $u: Z \to \mathbb{R}$ is unique up to a positive linear transformation.

Maxmin expected utility theorem

Theorem (Gilboa & Schmeidler, 1989)

Consider a finite set of outcomes Z and a finite state space Ω . Then, the preferences \succeq over $\mathcal F$ satisfy $A_1^*-A_7^*$ if and only if there is a function $u:Z\to\mathbb R$ and a closed and convex set of probability measures $C\subseteq \Delta(\Omega)$ such that for every $f,g\in\mathcal F$,

$$f \succeq g \Leftrightarrow \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \left(\sum_{z \in Z} f(\omega)(z) u(z) \right) \geq \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \left(\sum_{z \in Z} g(\omega)(z) u(z) \right)$$

Moreover, C is unique and $u: Z \to \mathbb{R}$ is unique up to a positive linear transformation.

The **maxmin expected utility** function that represent \succeq is

$$U_{M}(f) := \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \cdot \left(\sum_{z \in Z} f(\omega)(z) \cdot u(z) \right)$$

$$U_{M}(f) := \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \cdot \left(\sum_{z \in Z} f(\omega)(z) \cdot u(z) \right)$$

$$U_M(f) := \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \cdot \left(\sum_{z \in Z} f(\omega)(z) \cdot u(z) \right)$$

 The maxmin expected utility (MEU) function consists of two parts:

$$U_M(f) := \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \cdot \left(\sum_{z \in Z} f(\omega)(z) \cdot u(z) \right)$$

- The maxmin expected utility (MEU) function consists of two parts:
 - The utility function, $u: Z \to \mathbb{R}$.

$$U_M(f) := \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \cdot \left(\sum_{z \in Z} f(\omega)(z) \cdot u(z) \right)$$

- The maxmin expected utility (MEU) function consists of two parts:
 - The utility function, $u: Z \to \mathbb{R}$.
 - The set of subjective beliefs, $C \subseteq \Delta(\Omega)$.
- The utility function is the same as the one in AA's SEU.

$$U_M(f) := \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \cdot \left(\sum_{z \in Z} f(\omega)(z) \cdot u(z) \right)$$

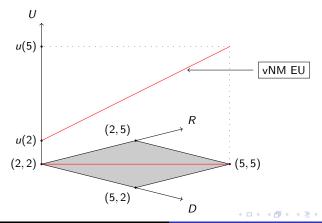
- The maxmin expected utility (MEU) function consists of two parts:
 - The utility function, $u: Z \to \mathbb{R}$.
 - The set of subjective beliefs, $C \subseteq \Delta(\Omega)$.
- The utility function is the same as the one in AA's SEU.
- Then, for each belief $\mu \in C$, we compute one SEU.

$$U_M(f) := \min_{\mu \in C} \sum_{\omega \in \Omega} \mu(\omega) \cdot \left(\sum_{z \in Z} f(\omega)(z) \cdot u(z) \right)$$

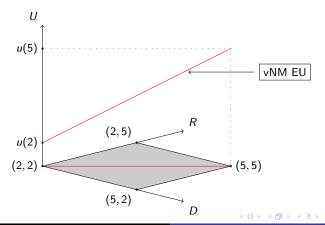
- The maxmin expected utility (MEU) function consists of two parts:
 - The utility function, $u: Z \to \mathbb{R}$.
 - The set of subjective beliefs, $C \subseteq \Delta(\Omega)$.
- The utility function is the same as the one in AA's SEU.
- Then, for each belief $\mu \in C$, we compute one SEU.
- Finally, the MEU is the worst-case scenario among all possible beliefs in *C*.

• The utility function $u: Z \to \mathbb{R}$ is the same as in vNM and AA.

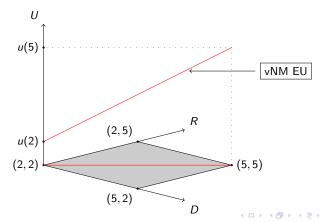
- The utility function $u: Z \to \mathbb{R}$ is the same as in vNM and AA.
- For constant acts, MEU coincides with SEU and EU.



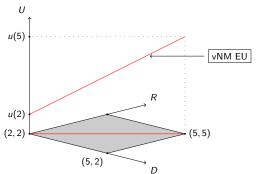
- The utility function $u: Z \to \mathbb{R}$ is the same as in vNM and AA.
- For constant acts, MEU coincides with SEU and EU.
 - For all acts, $A_1^*-A_3^*$ are the same as $A_1^{\prime\prime}-A_3^{\prime\prime}$.



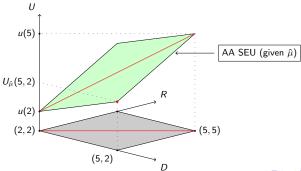
- The utility function $u: Z \to \mathbb{R}$ is the same as in vNM and AA.
- For constant acts, MEU coincides with SEU and EU.
 - For all acts, $A_1^* A_3^*$ are the same as $A_1'' A_3''$.
 - For constant acts, A_4^* is the same as AA's A_4'' .



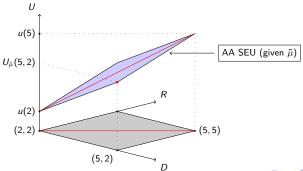
• Each belief corresponds to a different SEU function:



- Each belief corresponds to a different SEU function:
 - The belief $\hat{\mu}$ corresponds to $U_{\hat{\mu}}$.

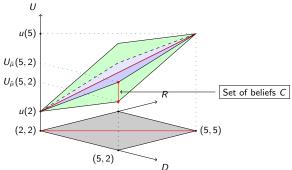


- Each belief corresponds to a different SEU function:
 - The belief $\hat{\mu}$ corresponds to $U_{\hat{\mu}}$.
 - The belief $\tilde{\mu}$ corresponds to $U_{\tilde{\mu}}$.



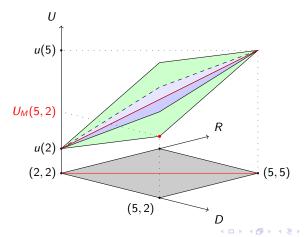
- Each belief corresponds to a different SEU function:
 - The belief $\hat{\mu}$ corresponds to $U_{\hat{\mu}}$.
 - The belief $\tilde{\mu}$ corresponds to $U_{\tilde{\mu}}$.
- The set of planes corresponds to the set of beliefs:

$$C = \{ \mu \in \Delta(\Omega) : \hat{\mu}(D) \le \mu(D) \le \tilde{\mu}(D) \}$$



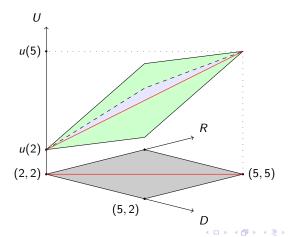
Maxmin expected utility representation

• Each act receives the utility of the lowest plane.



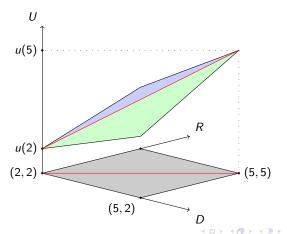
Maxmin expected utility representation

- Each act receives the utility of the lowest plane.
 - The acts below the constant acts are assigned the green utility.

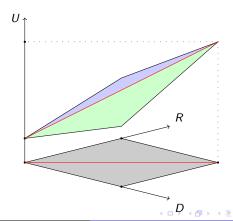


Maxmin expected utility representation

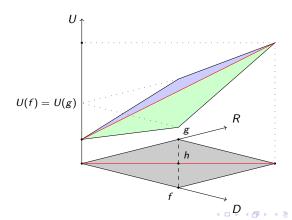
- Each act receives the utility of the lowest plane.
 - The acts below the constant acts are assigned the green utility.
 - The acts above the constant acts are assigned the blue utility.



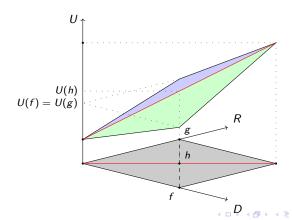
• The MEU function is concave:



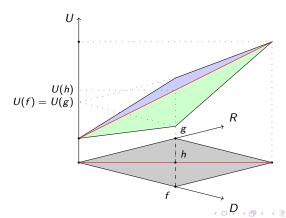
- The MEU function is concave:
 - For $f \sim g$, take $h = (0.5 \circledast f, 0.5 \circledast g)$.



- The MEU function is concave:
 - For $f \sim g$, take $h = (0.5 \circledast f, 0.5 \circledast g)$.
 - Observe that $U(h) \ge 0.5 \cdot U(f) + 0.5 \cdot U(g)$.



- The MEU function is concave:
 - For $f \sim g$, take $h = (0.5 \circledast f, 0.5 \circledast g)$.
 - Observe that $U(h) \ge 0.5 \cdot U(f) + 0.5 \cdot U(g)$.
- This is because of ambiguity aversion: $f \sim g \Rightarrow h \succeq f$.



act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2		$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

• Let the agent consider possible all beliefs in $\Delta(\Omega)$:

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2		$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Let the agent consider possible all beliefs in $\Delta(\Omega)$:
 - $U_M(f_1) = \min_{\mu \in \Delta(\Omega)} \left(\frac{1}{3} \mu(\omega_1) + \frac{1}{3} \mu(\omega_2) + \frac{1}{3} \mu(\omega_3) \right) = \frac{1}{3}$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2		$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Let the agent consider possible all beliefs in $\Delta(\Omega)$:
 - $U_M(f_1) = \min_{\mu \in \Delta(\Omega)} \left(\frac{1}{3} \mu(\omega_1) + \frac{1}{3} \mu(\omega_2) + \frac{1}{3} \mu(\omega_3) \right) = \frac{1}{3}$
 - $U_M(f_2) = \min_{\mu \in \Delta(\Omega)} \left(\frac{2}{3} \mu(\omega_1) + \frac{1}{3} \mu(\omega_2) \right) = 0$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1\circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2		$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Let the agent consider possible all beliefs in $\Delta(\Omega)$:
 - $U_M(f_1) = \min_{\mu \in \Delta(\Omega)} \left(\frac{1}{3} \mu(\omega_1) + \frac{1}{3} \mu(\omega_2) + \frac{1}{3} \mu(\omega_3) \right) = \frac{1}{3}$
 - $U_M(f_2) = \min_{\mu \in \Delta(\Omega)} \left(\frac{2}{3}\mu(\omega_1) + \frac{1}{3}\mu(\omega_2)\right) = 0$
 - $U_M(g_1) = \min_{\mu \in \Delta(\Omega)} \left(\frac{1}{3} \mu(\omega_1) + \frac{2}{3} \mu(\omega_2) + \mu(\omega_3) \right) = \frac{1}{3}$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g 2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Let the agent consider possible all beliefs in $\Delta(\Omega)$:
 - $U_M(f_1) = \min_{\mu \in \Delta(\Omega)} \left(\frac{1}{3} \mu(\omega_1) + \frac{1}{3} \mu(\omega_2) + \frac{1}{3} \mu(\omega_3) \right) = \frac{1}{3}$
 - $U_M(f_2) = \min_{\mu \in \Delta(\Omega)} \left(\frac{2}{3} \mu(\omega_1) + \frac{1}{3} \mu(\omega_2) \right) = 0$
 - $U_M(g_1) = \min_{\mu \in \Delta(\Omega)} \left(\frac{1}{3} \mu(\omega_1) + \frac{2}{3} \mu(\omega_2) + \mu(\omega_3) \right) = \frac{1}{3}$
 - $U_M(g_2) = \min_{\mu \in \Delta(\Omega)} \left(\frac{2}{3} \mu(\omega_1) + \frac{2}{3} \mu(\omega_2) + \frac{2}{3} \mu(\omega_3) \right) = \frac{2}{3}$

act	2 black/0 yellow (ω_1)	1 black/1 yellow (ω_2)	0 black/2 yellow (ω_3)
f_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$
f_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(1 \circledast 0)$
g_1	$(1/3 \circledast 10, 2/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(1 \circledast 10)$
g_2	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$	$(2/3 \circledast 10, 1/3 \circledast 0)$

- Let the agent consider possible all beliefs in $\Delta(\Omega)$:
 - $U_M(f_1) = \min_{\mu \in \Delta(\Omega)} \left(\frac{1}{3} \mu(\omega_1) + \frac{1}{3} \mu(\omega_2) + \frac{1}{3} \mu(\omega_3) \right) = \frac{1}{3}$
 - $U_M(f_2) = \min_{\mu \in \Delta(\Omega)} \left(\frac{2}{3} \mu(\omega_1) + \frac{1}{3} \mu(\omega_2) \right) = 0$
 - $U_M(g_1) = \min_{\mu \in \Delta(\Omega)} \left(\frac{1}{3} \mu(\omega_1) + \frac{2}{3} \mu(\omega_2) + \mu(\omega_3) \right) = \frac{1}{3}$
 - $U_M(g_2) = \min_{\mu \in \Delta(\Omega)} \left(\frac{2}{3} \mu(\omega_1) + \frac{2}{3} \mu(\omega_2) + \frac{2}{3} \mu(\omega_3) \right) = \frac{2}{3}$
- Hence, $f_1 \succ f_2$ and $g_2 \succ g_1$.

• The MEU representation of GS is a very important result in decision theory:

- The MEU representation of GS is a very important result in decision theory:
 - It proposes an explanation for Ellsberg paradox.

- The MEU representation of GS is a very important result in decision theory:
 - It proposes an explanation for Ellsberg paradox.
 - It provides a preference-based axiomatization of the maxmin decision rule.

- The MEU representation of GS is a very important result in decision theory:
 - It proposes an explanation for Ellsberg paradox.
 - It provides a preference-based axiomatization of the maxmin decision rule.
- Still it has its limitations:
 - It is a very conservative description of the world: agents have extreme aversion to ambiguity.

- The MEU representation of GS is a very important result in decision theory:
 - It proposes an explanation for Ellsberg paradox.
 - It provides a preference-based axiomatization of the maxmin decision rule.
- Still it has its limitations:
 - It is a very conservative description of the world: agents have extreme aversion to ambiguity.
 - There are alternative models of ambiguity in the literature.

Thanks for watching!!!