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Violating SEU Relaxing IIA Maxmin EU

Subjective expected utility theorem

Ansombe-Aumann SEU theorem: The following two
statements are equivalent.

Preferences � satisfy the axioms:

(A′′
1 ) Completeness

(A′′
2 ) Transitivity

(A′′
3 ) Continuity

(A′′
4 ) Independence of irrelevant alternatives

(A′′
5 ) Monotonicity

(A′′
6 ) Non-triviality

There exist

a utility function u : Z → R
a unique belief µ ∈ ∆(Ω)

such that � are represented by

U(f ) :=
∑
ω∈Ω

µ(ω) ·
(∑

z∈Z

f (ω)(z) · u(z)

)
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Violation of SEU: The Ellsberg paradox

We draw from an urn with three balls (one red and unknown
number of black/yellow):

f1 : if the ball is red you get 10 Euros
f2 : if the ball is black you get 10 Euros
g1 : if the ball is red or yellow you get 10 Euros
g2 : if the ball is black or yellow you get 10 Euros

Write them as acts:

act 2 black/0 yellow (ω1) 1 black/1 yellow (ω2) 0 black/2 yellow (ω3)
f1 (1/3 ~ 10, 2/3 ~ 0) (1/3 ~ 10, 2/3 ~ 0) (1/3 ~ 10, 2/3 ~ 0)
f2 (2/3 ~ 10, 1/3 ~ 0) (1/3 ~ 10, 2/3 ~ 0) (1 ~ 0)
g1 (1/3 ~ 10, 2/3 ~ 0) (2/3 ~ 10, 1/3 ~ 0) (1 ~ 10)
g2 (2/3 ~ 10, 1/3 ~ 0) (2/3 ~ 10, 1/3 ~ 0) (2/3 ~ 10, 1/3 ~ 0)

In experiments we typically see f1 � f2 and g2 � g1.

This is not consistent with SEU.
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3
U(f2) = 2
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3µ(ω2)

U(g1) = 1
3µ(ω1) + 2
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Roadmap

1 Violations of Subjective Expected Utility

2 Relaxing the Independence of Irrelevant Alternatives

3 Maxmin Expected Utility
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Violating SEU Relaxing IIA Maxmin EU

Gilboa-Schmeidler preferences

Definition

We say that an agent has Gilboa-Schmeidler (GS) preferences
over F whenever � satisfies the following axioms:

(A∗1) Completeness: For any two acts f , g ∈ F , it is the case that
f � g or g � f .

(A∗2) Transitivity: For any three acts f , g , h ∈ F with f � g and
g � h, it is the case that f � h.

(A∗3) Continuity: For any three acts f , g , h ∈ F with f � g � h,
there exists some α ∈ (0, 1) such that
g ∼

(
α~ f , (1− α) ~ h

)
.

(A∗4) Certainty independence (C-independence): For any two
acts f , g ∈ F , any constant act h ∈ Fc and any α ∈ [0, 1], it
is the case that f � g if and only if(
α~ f , (1− α) ~ h

)
�
(
α~ g , (1− α) ~ h

)
.

(A∗5) Monotonicity: For any two acts f , g ∈ F with f (ω) � g(ω)
for all ω ∈ Ω it is the case that f � g .

(A∗6) Non-triviality: There exist two acts f , g ∈ F such that
f � g .

(A∗7) Ambiguity aversion: For any two acts f , g ∈ F with f ∼ g
and any α ∈ [0, 1] it is the case that

(
α~ f , (1−α) ~ g

)
� f .

Theory of Individual and Strategic Decisions Maxmin expected utility



Violating SEU Relaxing IIA Maxmin EU

Gilboa-Schmeidler preferences

Definition

We say that an agent has Gilboa-Schmeidler (GS) preferences
over F whenever � satisfies the following axioms:

(A∗1) Completeness: For any two acts f , g ∈ F , it is the case that
f � g or g � f .

(A∗2) Transitivity: For any three acts f , g , h ∈ F with f � g and
g � h, it is the case that f � h.

(A∗3) Continuity: For any three acts f , g , h ∈ F with f � g � h,
there exists some α ∈ (0, 1) such that
g ∼

(
α~ f , (1− α) ~ h

)
.

(A∗4) Certainty independence (C-independence): For any two
acts f , g ∈ F , any constant act h ∈ Fc and any α ∈ [0, 1], it
is the case that f � g if and only if(
α~ f , (1− α) ~ h

)
�
(
α~ g , (1− α) ~ h

)
.

(A∗5) Monotonicity: For any two acts f , g ∈ F with f (ω) � g(ω)
for all ω ∈ Ω it is the case that f � g .

(A∗6) Non-triviality: There exist two acts f , g ∈ F such that
f � g .

(A∗7) Ambiguity aversion: For any two acts f , g ∈ F with f ∼ g
and any α ∈ [0, 1] it is the case that

(
α~ f , (1−α) ~ g

)
� f .

Theory of Individual and Strategic Decisions Maxmin expected utility



Violating SEU Relaxing IIA Maxmin EU

Gilboa-Schmeidler preferences

Definition

We say that an agent has Gilboa-Schmeidler (GS) preferences
over F whenever � satisfies the following axioms:

(A∗1) Completeness: For any two acts f , g ∈ F , it is the case that
f � g or g � f .

(A∗2) Transitivity: For any three acts f , g , h ∈ F with f � g and
g � h, it is the case that f � h.

(A∗3) Continuity: For any three acts f , g , h ∈ F with f � g � h,
there exists some α ∈ (0, 1) such that
g ∼

(
α~ f , (1− α) ~ h

)
.

(A∗4) Certainty independence (C-independence): For any two
acts f , g ∈ F , any constant act h ∈ Fc and any α ∈ [0, 1], it
is the case that f � g if and only if(
α~ f , (1− α) ~ h

)
�
(
α~ g , (1− α) ~ h

)
.

(A∗5) Monotonicity: For any two acts f , g ∈ F with f (ω) � g(ω)
for all ω ∈ Ω it is the case that f � g .

(A∗6) Non-triviality: There exist two acts f , g ∈ F such that
f � g .

(A∗7) Ambiguity aversion: For any two acts f , g ∈ F with f ∼ g
and any α ∈ [0, 1] it is the case that

(
α~ f , (1−α) ~ g

)
� f .

Theory of Individual and Strategic Decisions Maxmin expected utility



Violating SEU Relaxing IIA Maxmin EU

Gilboa-Schmeidler preferences

Definition

We say that an agent has Gilboa-Schmeidler (GS) preferences
over F whenever � satisfies the following axioms:

(A∗1) Completeness: For any two acts f , g ∈ F , it is the case that
f � g or g � f .

(A∗2) Transitivity: For any three acts f , g , h ∈ F with f � g and
g � h, it is the case that f � h.

(A∗3) Continuity: For any three acts f , g , h ∈ F with f � g � h,
there exists some α ∈ (0, 1) such that
g ∼

(
α~ f , (1− α) ~ h

)
.

(A∗4) Certainty independence (C-independence): For any two
acts f , g ∈ F , any constant act h ∈ Fc and any α ∈ [0, 1], it
is the case that f � g if and only if(
α~ f , (1− α) ~ h

)
�
(
α~ g , (1− α) ~ h

)
.

(A∗5) Monotonicity: For any two acts f , g ∈ F with f (ω) � g(ω)
for all ω ∈ Ω it is the case that f � g .

(A∗6) Non-triviality: There exist two acts f , g ∈ F such that
f � g .

(A∗7) Ambiguity aversion: For any two acts f , g ∈ F with f ∼ g
and any α ∈ [0, 1] it is the case that

(
α~ f , (1−α) ~ g

)
� f .
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Certainty independence

C -independence is similar to IIA, but it restricts attention to
mixtures with constant acts.

f � g ⇔ (0.5 ~ f , 0.5 ~ h) � (0.5 ~ g , 0.5 ~ h)

IIA (for all h′ ∈ F)

: f � g ⇔ f ′ � g ′.

C-independence (for all h′′ ∈ Fc)

: f � g ⇔ f ′′ � g ′′.
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Ambiguity aversion

Ambiguity: not knowing the probabilities.

The agents has a preference for hedging.

There is one ball in the urn, either black or white:

act Black (ω1) White (ω2)
f (1 ~ 10) (1 ~ 0)
g (1 ~ 0) (1 ~ 10)

Based on the principle of insufficient reasoning, f ∼ g .

act Black (ω1) White (ω2)
(0.5 ~ f , 0.5 ~ g) (0.5 ~ 10, 0.5 ~ 0) (0.5 ~ 10, 0.5 ~ 0)

Then, (0.5 ~ f , 0.5 ~ g) � f means that the agent is
ambiguity averse:

If (0.5 ~ f , 0.5 ~ g) is chosen the probability of each outcome
is known.
If f is chosen the probability of each outcome is not known.
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Roadmap

1 Violations of Subjective Expected Utility

2 Relaxing the Independence of Irrelevant Alternatives

3 Maxmin Expected Utility
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Maxmin expected utility theorem

Theorem (Gilboa & Schmeidler, 1989)

Consider a finite set of outcomes Z and a finite state space Ω.
Then, the preferences � over F satisfy A∗1 − A∗7 if and only if there
is a function u : Z → R and a closed and convex set of probability
measures C ⊆ ∆(Ω) such that for every f , g ∈ F ,

f � g ⇔ min
µ∈C

∑
ω∈Ω

µ(ω)

(∑
z∈Z

f (ω)(z)u(z)

)
≥ min
µ∈C

∑
ω∈Ω

µ(ω)

(∑
z∈Z

g(ω)(z)u(z)

)
Moreover, C is unique and u : Z → R is unique up to a positive

linear transformation.

The maxmin expected utility function that represent � is

UM(f ) := min
µ∈C

∑
ω∈Ω

µ(ω) ·
(∑

z∈Z
f (ω)(z) · u(z)

)

Theory of Individual and Strategic Decisions Maxmin expected utility



Violating SEU Relaxing IIA Maxmin EU

Maxmin expected utility theorem

Theorem (Gilboa & Schmeidler, 1989)

Consider a finite set of outcomes Z and a finite state space Ω.
Then, the preferences � over F satisfy A∗1 − A∗7 if and only if there
is a function u : Z → R and a closed and convex set of probability
measures C ⊆ ∆(Ω) such that for every f , g ∈ F ,

f � g ⇔ min
µ∈C

∑
ω∈Ω

µ(ω)

(∑
z∈Z

f (ω)(z)u(z)

)
≥ min
µ∈C

∑
ω∈Ω

µ(ω)

(∑
z∈Z

g(ω)(z)u(z)

)
Moreover, C is unique and u : Z → R is unique up to a positive

linear transformation.

The maxmin expected utility function that represent � is

UM(f ) := min
µ∈C

∑
ω∈Ω

µ(ω) ·
(∑

z∈Z
f (ω)(z) · u(z)

)

Theory of Individual and Strategic Decisions Maxmin expected utility



Violating SEU Relaxing IIA Maxmin EU

The maxmin expected utility function

UM(f ) := min
µ∈C

∑
ω∈Ω

µ(ω) ·
(∑

z∈Z
f (ω)(z) · u(z)

)

The maxmin expected utility (MEU) function consists of two
parts:

The utility function, u : Z → R.
The set of subjective beliefs, C ⊆ ∆(Ω).

The utility function is the same as the one in AA’s SEU.

Then, for each belief µ ∈ C , we compute one SEU.

Finally, the MEU is the worst-case scenario among all possible
beliefs in C .
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The utility function

The utility function u : Z → R is the same as in vNM and AA.

For constant acts, MEU coincides with SEU and EU.

For all acts, A∗1 − A∗3 are the same as A′′1 − A′′3 .
For constant acts, A∗4 is the same as AA’s A′′4 .

R

(2, 2)

D
(5, 2)

(5, 5)

(2, 5)

U

u(2)

u(5)

vNM EU
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Beliefs

Each belief corresponds to a different SEU function:

The belief µ̂ corresponds to Uµ̂.
The belief µ̃ corresponds to Uµ̃.

The set of planes corresponds to the set of beliefs:

C = {µ ∈ ∆(Ω) : µ̂(D) ≤ µ(D) ≤ µ̃(D)}

R

(2, 2)

D
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Uµ̂(5, 2)

AA SEU (given µ̂)
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Uµ̃(5, 2)

Uµ̂(5, 2)
Set of beliefs C
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Maxmin expected utility representation

Each act receives the utility of the lowest plane.

The acts below the constant acts are assigned the green utility.
The acts above the constant acts are assigned the blue utility.

R

(2, 2)

D
(5, 2)

(5, 5)

U

u(2)

u(5)

UM(5, 2)

Theory of Individual and Strategic Decisions Maxmin expected utility



Violating SEU Relaxing IIA Maxmin EU

Maxmin expected utility representation

Each act receives the utility of the lowest plane.

The acts below the constant acts are assigned the green utility.

The acts above the constant acts are assigned the blue utility.

R

(2, 2)

D
(5, 2)

(5, 5)

U

u(2)

u(5)

UM(5, 2)

Theory of Individual and Strategic Decisions Maxmin expected utility



Violating SEU Relaxing IIA Maxmin EU

Maxmin expected utility representation

Each act receives the utility of the lowest plane.

The acts below the constant acts are assigned the green utility.
The acts above the constant acts are assigned the blue utility.

R

(2, 2)

D
(5, 2)

(5, 5)

U

u(2)

u(5)

UM(5, 2)

Theory of Individual and Strategic Decisions Maxmin expected utility



Violating SEU Relaxing IIA Maxmin EU

Ambiguity aversion

The MEU function is concave:

For f ∼ g , take h = (0.5 ~ f , 0.5 ~ g).
Observe that U(h) ≥ 0.5 · U(f ) + 0.5 · U(g).

This is because of ambiguity aversion: f ∼ g ⇒ h � f .

R

D

U

f

g

U(f ) = U(g)

h

U(h)
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The Ellsberg paradox revisited

act 2 black/0 yellow (ω1) 1 black/1 yellow (ω2) 0 black/2 yellow (ω3)
f1 (1/3 ~ 10, 2/3 ~ 0) (1/3 ~ 10, 2/3 ~ 0) (1/3 ~ 10, 2/3 ~ 0)
f2 (2/3 ~ 10, 1/3 ~ 0) (1/3 ~ 10, 2/3 ~ 0) (1 ~ 0)
g1 (1/3 ~ 10, 2/3 ~ 0) (2/3 ~ 10, 1/3 ~ 0) (1 ~ 10)
g2 (2/3 ~ 10, 1/3 ~ 0) (2/3 ~ 10, 1/3 ~ 0) (2/3 ~ 10, 1/3 ~ 0)

Let the agent consider possible all beliefs in ∆(Ω):

UM(f1) = minµ∈∆(Ω)

(
1
3µ(ω1) + 1

3µ(ω2) + 1
3µ(ω3)

)
= 1

3

UM(f2) = minµ∈∆(Ω)

(
2
3µ(ω1) + 1

3µ(ω2)
)

= 0

UM(g1) = minµ∈∆(Ω)

(
1
3µ(ω1) + 2

3µ(ω2) + µ(ω3)
)

= 1
3

UM(g2) = minµ∈∆(Ω)

(
2
3µ(ω1) + 2

3µ(ω2) + 2
3µ(ω3)

)
= 2

3

Hence, f1 � f2 and g2 � g1.
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Contribution of GS

The MEU representation of GS is a very important result in
decision theory:

It proposes an explanation for Ellsberg paradox.
It provides a preference-based axiomatization of the maxmin
decision rule.

Still it has its limitations:

It is a very conservative description of the world: agents have
extreme aversion to ambiguity.
There are alternative models of ambiguity in the literature.
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Thanks for watching!!!
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